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Abstract. We present three real forms of quantum superalgebra U,(OSp(ll2)). By defining 
suitable contraction limits we describe the q-deformations of D = 2 superPoincar6 and 
D = 2 superEuclidean algebras as Hopf bialgebras. 

The aim of this letter is to consider the real forms of quantum superalgebra 
U,(OSp( 112)) and perform different contraction limits, providing respectively quantum 
D = 2 Euclidean and quantum D = 2 Minkowski superalgebras. We perform these 
limits for the whole Hopf bialgebra structure of the real form of U,(OSp(lj2)), in 
order to obtain, after contraction, genuine quantum algebras [l, 21. It appears that in 
some contraction limits we need to supplement the rescaling of the generators with 
the change of scale of the deformation parameter q, approaching q = 1 in a way firstly 
proposed for U,(SU(2)) by the Firenze group [3-5]. 

The quantum superalgebra U,(OSp(ll2)) as  well as its dual object, quantum group 
OSPJl(2) were discussed extensively by Kulish [6-81, and the discussion of real forms 
of UJSp(2)) can be found in [9]. By considering firstly the real forms of the conven- 
tional superalgebra OSp(112)) ( q  = 1) we obtain three involutionst. 

(i) Two equivalent ones, describing the superalgebra OSp(112; R )  with the non- 
compact bosonic sector Sp(2; R ) =  SU(l . l ) .  

(ii) A third one, denoted in [ l l]  by UOSp( 112), with compact bosonic sector SU(2) 
and with the natural involution described by graded adjoint operation [lo, 111. Then 
we describe the extensions of these real forms to q # 1. It appears that similarly to the 
non-supersymmetric case of U,(Sp(2)) = U,(s1(2)) (see [9]) the degeneracy of real 
forms is removed, i.e. there are three real forms of U,(OSp(lJ2)) which are not 
equivalent. We then consider three contractions of the real form U,(OSp( 112))-two 
providing D = 2 Minkowski quantum supersymmetry algebra and one providing D = 2 
Euclidean quantum supersymmetry algebra. We describe their complete Hopf algebra 
structure (multiplication, comultiplication, antipode) as well as their Casimirs, obtained 
by considering the contraction of q-deformed Casimir for U,(OSp( 112)). Finally we 
present comments and mention the relation with the q-oscillator realization of 
U,(OSP(ll2)). 

t For the general discussion of involutions defining real forms of superalgebras see [IO] 
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L162 Letter to the Editor 

The conventional ( q  = 1) OSp(112) superalgebra is defined by its Cartan-Chevaley 
basis (em,  e-=,  h , )  as follows: 

{ em,  e - J  = h, [he, elel = *&, ( l a )  
where e,, e-, are odd (fermionic) generators. The Cartan-Weyl basis describing all 
generators of OSp( 112) is obtained by introducing the defining relations for the bosonic 
generators e,,, e-,-, corresponding to double roots: 

(e*-,  e*,,] = 

The relations ( 1  b )  imply that 

[e2-, = -% [h,, e+,=] = *4e,,, (IC) 

[e+20.  e=,]  = *4e,, [ekzo. e+- ]  = O .  ( I d )  
-A,".:--- ,,-, .l.̂ L ---- :- -..L-,--L-- "-/"\ 0. ,*, n.- .~. .~~:  ~~ ~ ~ ~ . _ . ~  

L U G  I G I ~ U V I I S  I L L )  U F ~ L L I U C  LIK UUSUIIIV buua~gcwa J P ~ L ,  - JLILJ.  Lumpanng wlrn 
standard formulae, the change of sign in the first formula (IC) should be observed. 
The physical O(2, 1; C) basis is given by the formulae 

L , =  -a(e2.+e_,,) L, = 2-Q(e2 ,  - cZa) (2) 

[Ll ,L, i=-L,  Liz, iJ = i, [ L , , L , ] = - L ,  (3) 

permitting us to write ( I C )  as follows 

i.e. describing the D = 3  Lorentz group with the signature (-++) ( L ,  compact, L,, L, 
non-compact). Using the formulae 

1 
V - - e z m  

' - 2 J z  (4) 

one gets 

( v+, V+} = f (L2  - L d  (V-, vq= - i ( L , + L , )  (V+, V_}= - iL,  ( s a )  

[ L , ,  V*l= *fV, [L,, ,  V*i=fV, [L,, ,  V*l= *fV* (56) 

and 

with the following Casimir: 

The real forms of the superalgebra generated by the set of bosonic generators E, 
and fermionic generators F, can be described [lo, 111 by the invariance under the 
automorphisms, which can be represented in the foiiowing three equivaieni ways: 

( a )  the conjugation 

(7) 
E , + T ( & )  F,-t dF,) 

( A =  E , ,  F,) 
T ( A .  A') = T ( A )  . T(A')  

( b )  the adjoint operation 
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(c) the graded adjoint operation 

where grad Bi = 0 and grad F, = 1. Further, we shall consider only the involution (b)  
which seems to be well adjusted to the quantum mechanical realization ofthe generators. 

For the superalgebra OSp(112) one can introduce the following three adjoint 
operations, leaving the relations ( la-d)  invariant: 

(9 
(10a) H , = - H ,  el2* = -e*,* e,, -le,, 

( lob)  ,6; = r;, P z 2 9  = z*2, era -e,, 

H : = H ,  EL,=-E,,, E,,=iiE,,. (10c) 

+ + - .  

(ii) 
-+ - - 

(iii) 

We shall assume that for the real form of the superalgebra the bosonic generators 
are anti-Hermitian (B.  = -ET) ,  and fermionic generators satisfy the relation f, = iF:, 
i.e. the bilinear supersymmetry relations have real coefficients. From (loa-c) we get 
the following. 

(i) For ( loa)  we get the formulae (2), (3) with L l =  -L,, ( k =  1,2,3) and (Sa, b)  
with V z = i V , .  In such a way we obtain the superalgebra OSp(112; R ) .  

(ii) For ( lob)  the generators i: = -ik; we choose 

(11) i -1 - I i - - ( z,‘, + - - z-20) ‘ -2  

which also satisfy the O(2, 1) algebra: 

[i,,i2]=i, [ i,, i,] = -i, [i3, i,] = -i2. (12) 

Introducing ?* =:(gm T i L - )  which satisfy ?: = i ?+ the remaining superalgebra 
relations are - -  - -  - .  
{ ?+, ?+) = t( i, - i,) ( 1 3 ~ )  

[L , ,  VJ= -t?* [ L , ,  V J =  -+?- [L,,  ?*I= Ftk. (13b) 

If we observe that the algebras (3) and (12) can be identified if L, = i,,, (mod 3), 
it can be checked that the remaining relations (Sa, b) and (13a. b) are the same if 
?+ = (l/fi)( V + i  V-). The involutions ( l o a )  in its bosonic sector describe the real 
algebra Sp(2; R), and the involution (lob)-the real algebra SU(1, l ) t .  Because 
Sp(2; R)  = SU(1, I), their supersymmetric extensions by only fermionic generators also 
have to be the same. 

{ v-, v-} = f(L,+ L,) {V+, V _ ) = a i ,  - -  - -  

(iii) For (lOc) we can choose 

I 1 
M --H,, (14) 

3 - 4  M --(E2*-E-2=) M -1 
2 - 8  - dE2, + E--2o) 

t We would like to point out that due to the presence of the ‘minus’ sign on the RHS of lhe first of the 
formulae ( l e )  these involutions are nor the same as in [9]. 
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satisfying M: = -Mk and the O(3)  algebra 

[M, ,  Mj] = E ~ ~ M ~ .  (15) 

The supersymmetry algebra relations can be obtained below (see equation (29)) by 
putting q = 1. The choice of the ‘+’ operation (10c) leads to the real superalgebra with 
compact bosonic sector SU(2) which has been discussed in detail in [ l l ]  and denoted 
by UOSp(ll2). It should be stressed that the relations (IOc) imply that in the fermionic 
sector ( F + ) + =  -F, i.e. it cannot be represented by a conventional Hermitian congrega- 
tion of complex matrices. In such a case it appears useful to use as the automorphism 
the graded adjoint operation (9). 

le,, e-J=[h, l ,  [h , ,  e,,l=*2e*, (16a) 

f(l+q+’){e,,, e,,}=e+2, (166) 

[ e lm,  = (1 +q2)(1 + C 2 ) { 1  -W,+ ll,+q-2(1 -q)2[h,l,eme-,l ( 1 6 ~ )  

[hy, e+2,1= *4e+,, (16d) 

[e=2or ~1 = *(I + qF2)(qh-+’+ q-(h-+”)e,, W e )  

e*,I=O. (16f) 

Introducing the ‘physical’ generators Li (see (2)) and extending the formulae (4) 

(17) 

The relations ( la -d)  are q-deformed in the following way: 

for q # 1 as follows 
- 3  -111 V+=f(q+q 1 era 

one can rewrite the relations (16c-e) as the deformed O(2,l) algebra 

[LI,  L21= - 3 4  I -2 (1 +$){I -(q+q-’)[a-4L,],z-4(q4- 1)2[2LJ,~V-V+} 

[L2, a= L, [L,,L,I=-L,. 

of U,(OSP(ll2)). 

(18) 

The first commutator shows that U,(Sp(2)) - U,(0(2,1)) is not a quantum subgroup 

The fermionic sector of the q-deformed Cartan-Weyl basis of OSp(112) takes the 
form: 

and 

[ L , ,  VJ = *:U+ 4*2)(44L’*l+ q - 4 q  v; 
[ L 2 ,  V,] = i( 1 + q * 2 ) ( q 4 L 3 * ’ +  q-4- 1 VT 

[ L 3 ,  V*]= *tfv*. 
(20) 

From the coproduct relations in the Cartan-Chevaley basis 

A(e,,) = e*mOqh-12+q-h-’20e*m A(h, )  = h,O 1 + 1 0  h, (21) 
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and the q-deformed defining relations (16b), one obtains the following coproduct 
formulae 
A(&) = L, Oq-4L>+q4L@L, - f(q + q-')q2'3{(q4- 1) V - 0  V- 

+ (q4 - 1 )  v+ 0 ~ + ) ~ - ~ ~ 3  

- ( q 4 -  1) v-0 vqq-=3 
A(&) L,0q-'L3+ q4L@LZ+$(q+ q - 1 ) q 2 L 3 { ( q - 4 -  1 )  V + 0  V+ 

A(L,) = L,O 11- 10 L, 
A(V,) = V+q-2L3+q2L~0 V,. 
Supplementing the relations defining co-units 

E ( L k )  = E (  v,) = 0 

and antipodes: 

S( L,  ) = - f (92 + q -2) L, + $( q -2 - 4 2 )  L, 
S(L2)=f(q-2-q2)L,-f(q2fq-Z)1, 
S(L, )  = -L, 
S( V,) = -qrl v, 

(24) 

we obtain the q-deformation of the Cartan-Weyl basis for OSp(l(2) as a bialgebra 
satisfying the axioms of quantum group [l, 21. 

Finally we observe that the quantum Casimir C l  takes the form (q  = e")  

Cq &([l-4LJi - 1 )  - ( L ,  + L2)(L1 - L2) +2  Cosh' 7 cosh 7(2  -4L3) V+ V- ( 2 5 )  
where we have chosen the constants in a way providing the standard limit (6) for q = 1. 
For the quantum superalgebra UJOSp(ll2)) one can introduce the invariance under 
the involutions (loa-c) provided that q is restricted in a suitable way ( q  = q* orlql= 1) .  
Let us introduce two types of automorphism of the coproducts A(a)= b,Ocj under 
the involutions a -+ ai .  

(i) Coalgebra automorphism: 

A(a') = (A(a)) '= 1 b;0 c: (26) 

(ii) Anti-coalgebra automorphism: 

A(a+)=(A'(a))+=x cTQb: 

where A'=  TA = Xi ciO b; (T-flip automorphism). 
One can write down the following table. 

Table I. The real forms ofthe complex quantum superalgebra U,(OSp( IIZ)), corresponding 
to the involutions (loa-c). 

~ ~~ 

Automorphism Automorphism Automorphism Name of 
Involution of superalgebra of coalgebra of anti-coalgebra real form 

(loa) 4=9* I91 = 1 9'4' u,(OS~(llz; RI)  
(lob) 141 = I 4'4. 141 = 1 fi,(OS~(llZ, R ) )  
( 1 0 C )  191'1 9=4' 141 = 1 U,(UOSP( 112)) 

One can show that the automorphism of superalgebra relations implies the same 
restrictions on q as the automorphism of the table of antipodes. 



Lt 66 Letter to the Editor 

From table 1 it follows that 
(i) The quantum deformation of the real superalgebra OSp( 112; R )  leads to diflerent 

real quantum superalgebras for the involutions (loa) and (lob), i.e. the deformation 
removes the degeneracy, described above. Similarly, as in the case of isomorphic 
algebras Sp(2; R)=SU(I ,  I )  where for U,(Sp(2)) we have 1q1= 1, one obtains two 
different real quantum algebras, with q taking respectively values on the unit circle 
(fi,(OSp(l/2; R)) or q real (U,(OSp(l/2; R)). In both cases the '+' involution generat- 
ing real structure is the automorphism of the anticoalgebra. 

(ii) The third involution leads to the quantum superalgebra U,(UOSp(ll2)) where 
141 = 1. It is described by three anti-Hermitian bosonic generators M, (see (14)) and 
two complex supercharges S ,  = E,,, where 

(S,)+ = *is, (28) 
as follows: 

and the basic supersymmetry relations are: 

IS,, S- }  = -[4iMJ,. 

( a )  Quanfum D=2 Euclidean SUSY. It is clear from the relation (3) that L ,=  T 
describes the compact subgroup O(2) of O(2,l)  algebra. We propose therefore the 
following rescaling of the superalgebra (18-20) 

L2 = RP, L,=3RP2 L, = T V , = f i Q ,  (30) 

and simultaneous rescaling of real deformation parameter q (see [3-5,121; K-maSS-hke 
parameter) 

We obtain by putting T +  m 

K . 2p2 {Q+, Q-I= --sinh- 
4 K 

{ Q * ,  Q*l= *fP, 

[P2,Q*1=0 (32) [T,Q,]=*fcosh-QQ, 2p2 [PI,  9 . 1 = t c o s h x Q 7  2 p 2  
K 

[ T ,  p 2 1 =  PI. 
4 P2 [T,P,]= - $ ~ s i n h -  

K 
[PI, p21= 0 

The Casimir (25) before the contraction limit R + m  should be rescaled as follows 

Cz(R'= R'C 2. (33) 
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From ( 2 5 )  and (30) one gets for R -P m the following result 

The comultiplication table (22) implies that 

2 A ( T )  = T@e-2Pl/"+e2Pi/"@ T+-ePz/x{Q+@Q,- Q-QQ-} e-'Z/" 
K 

2 A(P, )  = P,0e -2Pz /"  +e2'2/"@ P, - - e  p2'K(  Q,O Q+ + + Q-O Q-) e-']/' 

A(P,) = P 2 0  1 + 1 O P ,  

A(&) = Q*Oe-'~/"+e'~/"Q~ 

and after contraction the antipodes are 

K 

(35) 

S ( T ) = - T - -  P, S(Q+) =-Q* S ( P , ) = - P ,  r = 1 , 2 .  (36) 

( b )  Quantum D=2 Poincare' SUSY (qf I ) .  For all real values of q the following 

1 
K 

rescaling 

L,  = RPo L2 = RP, L , = L  v* = n q"/'(q+q-')-'S* (37) 

(p=O, 1): 
provides the finite limit R + c o  of the quantum superalgebra (18)-(20). We obtain 

fS*, S*}= 2(P, T Po) 

(S+,  SJ = 0 [ p @ , p " l = o  

[ L , S * l =  *is, [P, ,Q*1=0 

[ L ,  Pol = -PI [L ,  p ,1=  -Po 

c, = P,P' = P:-  P i .  

(38) 

and for the Casimir rescaled according to (33) we get 

(39) 
We see that the superalgebra structure for the contraction given by (37) describes 
classical D = 2  Euclidean superalgebra. The difference however, will appear in the 
wmultiplication rules 

A( Po) = Po@q-4L+ q4L0Po+iq 'L{ (q2  - l)S_OS_+ (q-'-  I)S+OS+}q-2L 

A(P, )  = P, O q-'L+ qaLO PI + fqZL((q- '  - I)S+OS+ - (4'- 1)s-O S_)q-2L 
(40) 

A(L) = L O 1  + 10 L 

A(&)= S,@q-'L+q2L0S* 

and in the formulae for the antipode 

S( L)  = -L 
S(P , )  = -$(g2+ qp)P,+:(q- ' -  $ ) P I  

S(P,) =l(g-'-q')Po-f(q'+q-')P,. 

S(S*)  = -qT'S* 
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We would like to mention that similar structure ofthe q-deformed D = 2 supersymmetry 
was obtained in [13] by studying the q-deformation of SL(lI1) superalgebra with the 
difference between classical and quantum algebra appearing in the comultiplication 
rules and the formulae for antipodes. 

( c )  Quantum D = 2  Poincari SUSY (q = I ,  K # 0). The third non-trivial contraction 
of the quantum superalgebra U,(OSp(l(2)) is provided by the rescaling 

L, = RPo L , = L  L, = RP,  V*=VTS, (42) 
and the redefinition (31) of the deformation parameter. In the limit R + m one gets 

2 PI { S , ,  S- )  = -& sinh- {&, S*) = - 9 0  
K 

(43) 
2 PI 

[L, PI1 = Po [p* ,p"l=o [P, ,  S*l = 0. 

[ L, Po] = ;K sinh - 2 p ,  [ L ,  S,] =$ cosh - S ,  
K K 

The Casimir rescaled in accordance with (4.4) takes the form 

and can be compared with the one obtained in [4,5] for the D = 2 Minkowski quantum 
plane. The coproduct formulae look as follows 

A(Po) = PoOe-2P~'" + e2p,iK 0 Po 

A( S,) = S,Oe-P"" + ePI/* OS, 
and the antipodes are given by 

(46) 

We have shown here three different contraction limits for the real quantum superal- 
gebra U,(OSp(ll2)) (the fourth, with L, unchanged, and q # 1, is divergent). Similarly, 
one can perform the contraction limits for other two real forms of the complex quantum 
superalgebra U,(OSp(ll2))t. 

We have described here different quantum D = 2 supersymmetry algebras obtained 
as the contraction limits of the real quantum superalgebra U,(OSp(ll2)). It should be 
mentioned that there are also two other contractions, not corresponding to D = 2  
supersymmetry. 

PO S(P , )  = -P, S ( P * ) = - s ,  S ( L ) =  -L- - - .  
K 

(i) Assuming the rescaling (31) and 

L, = RP, V , = a Q ,  (47) 
one obtains in the limit R + m the conventional D = 3 Minkowski superalgebra relation 
with modified comultiplication rules. 

(ii) Following the derivation of the q-deformed bosonic creation and annihilation 
operators by considering the limit j - m  of the (2j+ 1)-dimensional realizations of 

t One of the authors (JL) was informed by P Kulish that some contractions of U,(OSp(lJ2)) were obtained 
by him and the Firenze group. 
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UJSU(2)) [14], one can derive in an analogous way the algebra of q-deformed 
fermionic oscillators described by the suitable limits of V, [U]. 

From our formula (18) it is clear that the quantum Lie algebra UJSp(2)) is not a 
quantum subalgebra of U,(OSp(ll2)). This property is due to the prescription (166) 
for the generators corresponding to the non-simple roots. If we use however the 
q-oscillator realization of the q-deformed Cartan-Cbevaley basis (e,,, h.) of 
U,(OSp(ll2) (see e.g. [16,17]), one can propose diferent definitions of the generators 
e*>=. e.g. obtained by the q-deformation of the oscillator realizations of OSp(112). In 
such a way one obtains a different q-deformation of the Cartan-Weyl basis of OSp( 112), 
with q-deformed Sp(2) being the subalgebra of the q-deformed OSp(112). Other 
relations for q-deformed Cartan-Weyl basis U,(OSp(ll2)) have also been obtained by 
Kulish [61 using the Fadeev-Reshetikhin-Takhtajan formalism of triangular L* 
operators [2]. 

The main aim of this letter was to show the variety of possible contractions for a 
simple rank-one quantum group. Because the R-matrix and dual description of the 
generators of the algebra of functions for OSp,(112) is also known [6,7], one can also 
perform the contractions of the R-matrix and introduce the dual picture of contracted 
quantum supergroups. 

Finally let us mention that our real aim is the q-deformation of the D = 4 super- 
Poincare algebra [18] as the supersymmetric extension of our results for the q-deformed 
PoincarO algebra [12]. In such a case one considers the contraction of the real quantum 
superalgebra UJOSP(114; R). 

One of the authors (JL) would like to thank Drs P Kulish and C Sorace for the 
information that they were working on similar problems, and the agreement to publish 
our results independently. 
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