Real forms of $U_{q}(O S p(1 / 2))$ and quantum $D=2$ supersymmetry algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L161
(http://iopscience.iop.org/0305-4470/25/4/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:51

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Real forms of $\mathbf{U}_{q}(\operatorname{OSp}(1 \mid 2))$ and quantum $D=2$ supersymmetry algebras

Jerzy Lukierski \dagger and Anatol Nowicki \ddagger
\dagger Institute of Theoretical Physics, University of Wroclaw, Cybulskiego 36, 50-205 Wroclaw, Poland \ddagger Institute of Physics, Pedagogical University, Plac Słowiański 6, 65-029 Zielona Góra, Poland

Received 3 July 1991

Abstract

We present three real forms of quantum superalgebra $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2))$. By defining suitable contraction limits we describe the q-deformations of $D=2$ superPoincaré and $D=2$ superEuclidean algebras as Hopf bialgebras.

The aim of this letter is to consider the real forms of quantum superalgebra $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2))$ and perform different contraction limits, providing respectively quantum $D=2$ Euclidean and quantum $D=2$ Minkowski superalgebras. We perform these limits for the whole Hopf bialgebra structure of the real form of $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2))$, in order to obtain, after contraction, genuine quantum algebras [1,2]. It appears that in some contraction limits we need to supplement the rescaling of the generators with the change of scale of the deformation parameter q, approaching $q=1$ in a way firstly proposed for $\mathrm{U}_{q}(\mathrm{SU}(2))$ by the Firenze group [3-5].

The quantum superalgebra $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2))$ as well as its dual object, quantum group $\operatorname{OSP}_{q}(1 \mid 2)$ were discussed extensively by Kulish [6-8], and the discussion of real forms of $\mathrm{U}_{q}(\mathrm{Sp}(2))$ can be found in [9]. By considering firstly the real forms of the conventional superalgebra $\operatorname{OSp}(1 \mid 2))(q=1)$ we obtain three involutions \dagger.
(i) Two equivalent ones, describing the superalgebra $\operatorname{OSp}(1 \mid 2 ; R)$ with the noncompact bosonic sector $\mathrm{Sp}(2 ; R) \approx \mathrm{SU}(1.1)$.
(ii) A third one, denoted in [11] by $\operatorname{UOSp}(1 \mid 2)$, with compact bosonic sector $\operatorname{SU}(2)$ and with the natural involution described by graded adjoint operation [10, 11]. Then we describe the extensions of these real forms to $q \neq 1$. It appears that similarly to the non-supersymmetric case of $\mathrm{U}_{q}(\mathrm{Sp}(2)) \simeq \mathrm{U}_{q}(\mathrm{sl}(2))$ (see [9]) the degeneracy of real forms is removed, i.e. there are three real forms of $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2))$ which are not equivalent. We then consider three contractions of the real form $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2))$-two providing $D=2$ Minkowski quantum supersymmetry algebra and one providing $D=2$ Euclidean quantum supersymmetry algebra. We describe their complete Hopf algebra structure (multiplication, comultiplication, antipode) as well as their Casimirs, obtained by considering the contraction of q-deformed Casimir for $U_{q}(\operatorname{OSp}(1 \mid 2))$. Finally we present comments and mention the relation with the q-oscillator realization of $\mathrm{U}_{q}(\mathrm{OSp}(1 \mid 2))$.

[^0]The conventional ($q=1$) $\operatorname{OSp}(1 \mid 2)$ superalgebra is defined by its Cartan-Chevaley basis ($e_{\alpha}, e_{-\alpha}, h_{\alpha}$) as follows:

$$
\begin{equation*}
\left\{e_{\alpha}, e_{-\alpha}\right\}=h_{\alpha} \quad\left[h_{\alpha}, e_{ \pm \alpha}\right]= \pm 2 e_{ \pm \alpha} \tag{1a}
\end{equation*}
$$

where $e_{\alpha}, e_{-\alpha}$ are odd (fermionic) generators. The Cartan-Weyl basis describing all generators of $\operatorname{OSp}(1 \mid 2)$ is obtained by introducing the defining relations for the bosonic generators $e_{2 \alpha}, e_{-2 \alpha}$, corresponding to double roots:

$$
\begin{equation*}
\left\{e_{ \pm \alpha}, e_{ \pm \alpha}\right\}=e_{ \pm 2 \alpha} . \tag{1b}
\end{equation*}
$$

The relations ($1 b$) imply that

$$
\begin{array}{ll}
{\left[e_{2 \alpha}, e_{-2 \alpha}\right]=-8 h_{\alpha}} & {\left[h_{\alpha}, e_{ \pm 2 \alpha}\right]= \pm 4 e_{ \pm 2 \alpha}} \\
{\left[e_{ \pm 2 \alpha}, e_{\mp \alpha}\right]= \pm 4 e_{ \pm \alpha}} & {\left[e_{ \pm 2 \alpha}, e_{ \pm \alpha}\right]=0 .} \tag{1d}
\end{array}
$$

The relations ($1 c$) describe the bosonic subalgebra $\mathrm{S}_{\mathrm{p}}(2) \sim \mathrm{SL}(2)$. Comparing with standard formulae, the change of sign in the first formula ($1 c$) should be observed. The physical $\mathrm{O}(2,1 ; C)$ basis is given by the formulae

$$
\begin{equation*}
L_{1}=-\frac{1}{8}\left(e_{2 \alpha}+e_{-2 \alpha}\right) \quad L_{2}=2-\frac{1}{8}\left(e_{2 \alpha}-e_{-2 \alpha}\right) \tag{2}
\end{equation*}
$$

permitting us to write (1c) as follows

$$
\begin{equation*}
\left[\bar{L}_{1}, \bar{L}_{2}\right]=-\bar{L}_{3} \quad\left[L_{2}, L_{3}\right]=L_{1} \quad\left[\bar{L}_{3}, \bar{L}_{1}\right]=-\bar{L}_{2} \tag{3}
\end{equation*}
$$

i.e. describing the $D=3$ Lorentz group with the signature (-++) (L_{1} compact, L_{2}, L_{3} non-compact). Using the formulae

$$
\begin{equation*}
V_{ \pm}=\frac{1}{2 \sqrt{2}} e_{\mp \alpha} \tag{4}
\end{equation*}
$$

one gets
$\left\{V_{+}, V_{+}\right\}=\frac{1}{2}\left(L_{2}-L_{1}\right) \quad\left\{V_{-}, V_{-}\right\}=-\frac{1}{2}\left(L_{1}+L_{2}\right) \quad\left\{V_{+}, V_{-}\right\}=-\frac{1}{2} L_{3}$
and

$$
\begin{equation*}
\left[L_{1}, V_{ \pm}\right]= \pm \frac{1}{2} V_{\mp} \quad\left[L_{2}, V_{ \pm}\right]=\frac{1}{2} V_{\mp} \quad\left[L_{3}, V_{ \pm}\right]= \pm \frac{1}{2} V_{ \pm} \tag{5b}
\end{equation*}
$$

with the following Casimir:

$$
\begin{equation*}
C_{2}^{q=1}=-L_{1}^{2}+L_{2}^{2}+\left(L_{3}-\frac{1}{4}\right)^{2}+2 V_{+} V_{-} . \tag{6}
\end{equation*}
$$

The real forms of the superalgebra generated by the set of bosonic generators B_{i} and fermionic generators F_{r} can be described [10,11] by the invariance under the automorphisms, which can be represented in the following three equivalent ways:
(a) the conjugation

$$
\begin{align*}
& B_{i} \rightarrow \tau\left(B_{i}\right) \quad F_{r} \rightarrow \tau\left(F_{r}\right) \\
& \tau\left(A \cdot A^{\prime}\right)=\tau(A) \cdot \tau\left(A^{\prime}\right) \tag{7}
\end{align*}
$$

(b) the adjoint operation

$$
\begin{array}{lll}
B_{i} \rightarrow B_{i}^{+}=-\tau\left(B_{i}\right) & F_{r} \rightarrow F_{r}^{+}= \pm \mathrm{i} \tau\left(F_{r}\right) & \left(A=B_{i}, F_{r}\right) \\
\left(A \cdot A^{\prime}\right)^{+}=\left(A^{\prime}\right)^{+} A^{+} &
\end{array}
$$

(c) the graded adjoint operation

$$
\begin{array}{ll}
B_{i} \rightarrow B_{i}^{*}=-\tau\left(B_{i}\right) \quad F_{r} \rightarrow F_{r}^{*}= \pm \tau\left(F_{r}\right) \tag{9}\\
\left(A \cdot A^{\prime}\right)^{*}=(-1)^{\mathrm{grad} A \cdot \mathrm{grad} A^{\prime}}\left(A^{\prime}\right)^{*} A^{*}
\end{array} \quad\left(A=B_{i}, F_{r}\right)
$$

where $\operatorname{grad} B_{i}=0$ and $\operatorname{grad} F_{r}=1$. Further, we shall consider only the involution (b) which seems to be well adjusted to the quantum mechanical realization of the generators.

For the superalgebra $\operatorname{OSp}(1 \mid 2)$ one can introduce the following three adjoint operations, leaving the relations ($1 a-d$) invariant:
(i)

$$
\begin{equation*}
H_{\alpha}^{+}=-H_{\alpha} \quad e_{ \pm 2 \alpha}^{+}=-e_{ \pm 2 \alpha} \quad e_{ \pm \alpha}^{+}=i e_{ \pm \alpha} \tag{10a}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\bar{h}_{\alpha}^{+}=\tilde{h}_{\alpha} \quad \bar{e}_{ \pm 2 \alpha}^{+}=\bar{e}_{\mp 2 \alpha} \quad \bar{e}_{ \pm \alpha}^{+}=\bar{e}_{\mp \alpha} \tag{10b}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
H_{\alpha}^{+}=H_{\alpha} \quad E_{ \pm 2 \alpha}^{+}=-E_{ \pm 2 \alpha} \quad E_{ \pm \alpha}= \pm \mathrm{i} E_{\mp \alpha} \tag{10c}
\end{equation*}
$$

We shall assume that for the real form of the superalgebra the bosonic generators are anti-Hermitian ($B_{i}=-B_{i}^{+}$), and fermionic generators satisfy the relation $f_{r}=\mathrm{i} F_{r}^{+}$, i.e. the bilinear supersymmetry relations have real coefficients. From ($10 a-c$) we get the following.
(i) For (10a) we get the formulae (2), (3) with $L_{k}^{+}=-L_{k}$, $(k=1,2,3)$ and (5a,b) with $V_{ \pm}^{+}=\mathrm{i} V_{ \pm}$. In such a way we obtain the superalgebra $\operatorname{OSp}(1 \mid 2 ; R)$.
(ii) For (10b) the generators $\tilde{L}_{k}^{+}=-\tilde{L}_{k}$; we choose

$$
\begin{equation*}
\tilde{L}_{l}=\frac{\mathbf{i}}{2}\left(\tilde{e}_{2 \alpha}+\tilde{e}_{-2 \alpha}\right) \quad \tilde{L}_{2}=\frac{1}{8}\left(\tilde{e}_{2 \alpha}-\tilde{e}_{-2 \alpha}\right) \tag{11}
\end{equation*}
$$

which also satisfy the $O(2,1)$ algebra:

$$
\begin{equation*}
\left[\tilde{L}_{1}, \tilde{L}_{2}\right]=\tilde{L}_{3} \quad\left[\tilde{L}_{2}, \tilde{L}_{3}\right]=-\tilde{L}_{1} \quad\left[\tilde{L}_{3}, \tilde{L}_{1}\right]=-\tilde{L}_{2} \tag{12}
\end{equation*}
$$

Introducing $\tilde{V}_{ \pm}=\frac{1}{4}\left(\tilde{e}_{\alpha} \mp \mathrm{i} \tilde{e}_{-\alpha}\right)$ which satisfy $\tilde{V}_{ \pm}^{+}=\mathrm{i} \tilde{V}_{ \pm}$the remaining superalgebra relations are
$\begin{array}{lrl}\left\{\tilde{V}_{+}, \tilde{V}_{+}\right\}=\frac{1}{2}\left(\tilde{L}_{3}-\tilde{L}_{2}\right) & \left\{\tilde{V}_{-}, \tilde{V}_{-}\right\}=\frac{1}{2}\left(\tilde{L}_{3}+\tilde{L}_{2}\right) & \left\{\tilde{V}_{+}, \tilde{V}_{-}\right\}=\frac{1}{4} \tilde{L}_{1} \\ {\left[\tilde{L}_{1}, \tilde{V}_{ \pm}\right]=-\frac{1}{2} \tilde{V}_{ \pm}} & {\left[\tilde{L}_{2}, \tilde{V}_{ \pm}\right]=-\frac{1}{2} \tilde{V}_{\mp}} & {\left[\tilde{L}_{3}, \tilde{V}_{ \pm}\right]=\mp \frac{1}{2} \tilde{V}_{\mp} .}\end{array}$
If we observe that the algebras (3) and (12) can be identified if $L_{k}=\tilde{L}_{k+2}(\bmod 3)$, it can be checked that the remaining relations $(5 a, b)$ and $(13 a, b)$ are the same if $\tilde{V}_{ \pm}=(1 / \sqrt{2})\left(V_{+} \pm V_{-}\right)$. The involutions ($10 a$) in its bosonic sector describe the real algebra $\operatorname{Sp}(2 ; R)$, and the involution ($10 b$)-the real algebra $\mathrm{SU}(1,1) \dagger$. Because $\mathbf{S p}(2 ; R) \approx \mathrm{SU}(1,1)$, their supersymmetric extensions by only fermionic generators also have to be the same.
(iii) For (10c) we can choose

$$
\begin{equation*}
M_{1}=\frac{1}{8}\left(E_{2 \alpha}+E_{-2 \alpha}\right) \quad M_{2}=\frac{i}{8}\left(E_{2 \alpha}-E_{-2 \alpha}\right) \quad M_{3}=\frac{i}{4} H_{\alpha} \tag{14}
\end{equation*}
$$

+ We would like to point out that due to the presence of the 'minus' sign on the RHS of the first of the formulae (1c) these involutions are not the same as in [9].
satisfying $M_{k}^{+}=-M_{k}$ and the $\mathrm{O}(3)$ algebra

$$
\begin{equation*}
\left[M_{i}, M_{j}\right]=\varepsilon_{i j k} M_{k} . \tag{15}
\end{equation*}
$$

The supersymmetry algebra relations can be obtained below (see equation (29)) by putting $q=1$. The choice of the ' + ' operation ($10 c$) leads to the real superalgebra with compact bosonic sector $\operatorname{SU}(2)$ which has been discussed in detail in [11] and denoted by $\operatorname{UOSp}(1 \mid 2)$. It should be stressed that the relations ($10 c$) imply that in the fermionic sector $\left(F^{+}\right)^{+}=-F$, i.e. it cannot be represented by a conventional Hermitian congregation of complex matrices. In such a case it appears useful to use as the automorphism the graded adjoint operation (9).

The relations ($1 a-d$) are q-deformed in the following way:
$\left\{e_{\alpha}, e_{-\alpha}\right\}=\left[h_{\alpha}\right]_{q} \quad\left[h_{\alpha}, e_{ \pm \alpha}\right]= \pm 2 e_{ \pm \alpha}$
$\frac{1}{2}\left(1+q^{ \pm 2}\right)\left\{e_{ \pm \alpha}, e_{ \pm \alpha}\right\}=e_{ \pm 2 \alpha}$
$\left[e_{2 \alpha}, e_{-2 \alpha}\right]=\left(1+q^{2}\right)\left(1+q^{-2}\right)\left\{1-\left[2 h_{\alpha}+1\right]_{q}+q^{-2}(1-q)^{2}\left[h_{\alpha}\right]_{q} e_{\alpha} e_{-\alpha}\right\}$
$\left[h_{\alpha}, e_{ \pm 2 \alpha}\right]= \pm 4 e_{ \pm 2 \alpha}$
$\left[e_{\mp 2 \alpha}, e_{ \pm \alpha}\right]= \pm\left(1+q^{\mp 2}\right)\left(q^{h_{a}+1}+q^{-\left(h_{\alpha}+1\right)}\right) e_{\mp \alpha}$
$\left[e_{ \pm 2 \alpha}, e_{ \pm \alpha}\right]=0$.
Introducing the 'physical' generators L_{i} (see (2)) and extending the formulae (4) for $q \neq 1$ as follows

$$
\begin{equation*}
V_{ \pm}=\frac{1}{2}\left(q+q^{-1}\right)^{-1 / 2} e_{\mp \alpha} \tag{17}
\end{equation*}
$$

one can rewrite the relations ($16 c-e$) as the deformed $O(2,1)$ algebra
$\left[L_{1}, L_{2}\right]=-\frac{1}{32} q^{-2}\left(1+q^{2}\right)\left\{1-\left(q+q^{-1}\right)\left[\frac{1}{4}-4 L_{3}\right]_{q^{2}}-4\left(q^{4}-1\right)^{2}\left[2 L_{3}\right]_{q^{2}} V_{-} V_{+}\right\}$
$\left[L_{2}, L_{3}\right]=L_{1} \quad\left[L_{3}, L_{1}\right]=-L_{2}$.
The first commutator shows that $\mathrm{U}_{q}(\mathrm{Sp}(2)) \sim \mathrm{U}_{q}(\mathrm{O}(2,1))$ is not a quantum subgroup of $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2))$.

The fermionic sector of the q-deformed Cartan-Weyl basis of $\operatorname{OSp}(1 \mid 2)$ takes the form:

$$
\begin{align*}
& \left\{V_{+}, V_{+}\right\}=\frac{2 q}{\left(q+q^{-1}\right)^{2}}\left(L_{2}-L_{1}\right) \\
& \left\{V_{-}, V_{-}\right\}=-\frac{2 q^{-1}}{\left(q+q^{-1}\right)^{2}}\left(L_{1}+L_{2}\right) \tag{19}\\
& \left\{V_{+}, V_{-}\right\}=-\frac{1}{4}\left[2 L_{3}\right]_{q^{2}}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[L_{1}, V_{ \pm}\right]= \pm \frac{1}{8}\left(1+q^{ \pm 2}\right)\left(q^{4 L_{3} \pm 1}+q^{-4 L_{3} \mp 1}\right) V_{\mp}^{*}} \\
& {\left[L_{2}, V_{ \pm}\right]=\frac{1}{8}\left(1+q^{22}\right)\left(q^{4 L_{3} \pm 1}+q^{-4 L_{3}{ }^{31}}\right) V_{\mp}} \tag{20}\\
& {\left[L_{3}, V_{ \pm}\right]= \pm \frac{1}{2} V_{ \pm} .}
\end{align*}
$$

From the coproduct relations in the Cartan-Chevaley basis

$$
\begin{equation*}
\Delta\left(e_{ \pm \alpha}\right)=e_{ \pm \alpha} \otimes q^{h_{\alpha} / 2}+q^{-h_{\alpha} / 2} \otimes e_{ \pm \alpha} \quad \Delta\left(h_{\alpha}\right)=h_{\alpha} \otimes 1+1 \otimes h_{\alpha} \tag{21}
\end{equation*}
$$

and the q-deformed defining relations ($16 b$), one obtains the following coproduct formulae

$$
\begin{align*}
\Delta\left(L_{1}\right)= & L_{1} \otimes q^{-4 L_{3}}+q^{4 L_{3}} \otimes L_{1}-\frac{1}{2}\left(q+q^{-1}\right) q^{2 L_{3}}\left\{\left(q^{4}-1\right) V_{-} \otimes V_{-}\right. \\
& \left.\quad+\left(q^{-4}-1\right) V_{+} \otimes V_{+}\right\} q^{-2 L_{3}} \\
\Delta\left(L_{2}\right)= & L_{2} \otimes q^{-4 L_{3}}+q^{4 L_{3}} \otimes L_{2}+\frac{1}{2}\left(q+q^{-1}\right) q^{2 L_{3}}\left\{\left(q^{-4}-1\right) V_{+} \otimes V_{+}\right. \\
& \left.\quad\left(q^{4}-1\right) V_{-} \otimes V_{-}\right\} q^{-2 L_{3}} \\
\Delta\left(L_{3}\right)= & L_{3} \otimes 1+1 \otimes L_{3} \tag{22}\\
\Delta\left(V_{ \pm}\right)= & V_{ \pm} q^{-2 L_{3}}+q^{2 L_{3}} \otimes V_{ \pm} .
\end{align*}
$$

Supplementing the relations defining co-units

$$
\begin{equation*}
\varepsilon\left(L_{k}\right)=\varepsilon\left(V_{ \pm}\right)=0 \tag{23}
\end{equation*}
$$

and antipodes:

$$
\begin{align*}
& S\left(L_{1}\right)=-\frac{1}{2}\left(q^{2}+q^{-2}\right) L_{1}+\frac{1}{2}\left(q^{-2}-q^{2}\right) L_{2} \\
& S\left(L_{2}\right)=\frac{1}{2}\left(q^{-2}-q^{2}\right) L_{1}-\frac{1}{2}\left(q^{2}+q^{-2}\right) l_{2} \\
& S\left(L_{3}\right)=-L_{3} \tag{24}\\
& S\left(V_{ \pm}\right)=-q^{\mp 1} V_{ \pm}
\end{align*}
$$

we obtain the q-deformation of the Cartan-Weyl basis for $\operatorname{OSp}(1 \mid 2)$ as a bialgebra satisfying the axioms of quantum group [1,2].

Finally we observe that the quantum Casimir C_{2}^{q} takes the form ($q=e^{\eta}$)
$C_{2}^{q}=\frac{1}{16}\left(\left[1-4 L_{3}\right]_{q}^{2}-1\right)-\left(L_{1}+L_{2}\right)\left(L_{1}-L_{2}\right)+2 \cosh ^{2} \eta \cosh \eta\left(2-4 L_{3}\right) V_{+} V_{-}$
where we have chosen the constants in a way providing the standard limit (6) for $q=1$. For the quantum superalgebra $\mathrm{U}_{q}(\mathrm{OSp}(1 \mid 2))$ one can introduce the invariance under the involutions ($10 a-c$) provided that q is restricted in a suitable way ($q=q^{*}$ or $|q|=1$). Let us introduce two types of automorphisms of the coproducts $\Delta(a)=b_{i} \otimes c_{i}$ under the involutions $a \rightarrow a^{+}$.
(i) Coalgebra automorphism:

$$
\begin{equation*}
\Delta\left(a^{+}\right)=(\Delta(a))^{+}=\sum_{i} b_{i}^{+} \otimes c_{i}^{+} \tag{26}
\end{equation*}
$$

(ii) Anti-coalgebra automorphism:

$$
\begin{equation*}
\Delta\left(a^{+}\right)=\left(\Delta^{\prime}(a)\right)^{+}=\sum_{i} c_{l}^{+} \otimes b_{i}^{+} \tag{27}
\end{equation*}
$$

where $\Delta^{\prime}=\tau \Delta=\Sigma_{i} c_{i} \otimes b_{i}$ (τ-flip automorphism).
One can write down the following table.
Table 1. The real forms of the complex quantum superalgebra $U_{q}(\operatorname{OSp}(1 \mid 2))$, corresponding to the involutions ($10 a-c$).

Involution	Automorphism of superalgebra	Automorphism of coalgebra	Automorphism of anti-coalgebra	Name of real form
$(10 a)$	$q=q^{*}$	$\|q\|=1$	$q=q^{*}$	$\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2 ; R))$
$(10 b)$	$\|q\|=1$	$q=q^{*}$	$q=q^{*}$	$\|q\|=1$

One can show that the automorphism of superalgebra relations implies the same restrictions on q as the automorphism of the table of antipodes.

From table 1 it follows that
(i) The quantum deformation of the real superalgebra $\mathrm{OSp}(1 \mid 2 ; R)$ leads to different real quantum superalgebras for the involutions (10a) and (10b), i.e. the deformation removes the degeneracy, described above. Similarly, as in the case of isomorphic algebras $\mathrm{Sp}(2 ; R) \approx \mathrm{SU}(1,1)$ where for $\mathrm{U}_{q}(\mathrm{Sp}(2))$ we have $|q|=1$, one obtains two different real quantum algebras, with q taking respectively values on the unit circle $\left(\tilde{\mathrm{U}}_{q}(\mathrm{OSp}(1 \mid 2 ; R))\right.$ or q real $\left(\mathrm{U}_{q}(\mathrm{OSp}(1 \mid 2 ; R))\right.$. In both cases the ' + ' involution generating real structure is the automorphism of the anticoalgebra.
(ii) The third involution leads to the quantum superalgebra $U_{q}(\operatorname{UOSp}(1 \mid 2))$ where $|q|=1$. It is described by three anti-Hermitian bosonic generators M_{i} (see (14)) and two complex supercharges $S_{ \pm}=E_{ \pm \alpha}$, where

$$
\begin{equation*}
\left(S_{ \pm}\right)^{+}= \pm \mathrm{i} S_{\mp} \tag{28}
\end{equation*}
$$

as follows:

$$
\begin{gather*}
{\left[M_{1}, M_{2}\right]=-\frac{\mathrm{i}}{32} q^{-2}\left(1+q^{2}\right)\left\{1-\left(q+q^{-1}\right)\left[\frac{1}{2}-4 \mathrm{i} M_{3}\right]_{q^{2}}-q\left(q^{2}-1\right)\left[2 \mathrm{i} m_{3}\right]_{q^{2}} S_{-} S_{+}\right\}} \\
{\left[M_{2}, M_{3}\right]=M_{1} \quad\left[M_{3}, M_{1}\right]=M_{2}} \tag{29a}
\end{gather*}
$$

and the basic supersymmetry relations are:

$$
\begin{align*}
& \left\{S_{+}, S_{+}\right\}=\frac{8}{1+q^{2}}\left(M_{1}-\mathrm{i} M_{2}\right) \\
& \left\{S_{-}, S_{-}\right\}=\frac{8}{1+q^{-2}}\left(M_{1}+\mathrm{i} M_{2}\right) \tag{29b}\\
& \left\{S_{+}, S_{-}\right\}=-\left[4 \mathrm{i} M_{3}\right]_{q} .
\end{align*}
$$

(a) Quantum $D=2$ Euclidean susy. It is clear from the relation (3) that $L_{1}=T$ describes the compact subgroup $O(2)$ of $O(2,1)$ algebra. We propose therefore the following rescaling of the superalgebra (18-20)

$$
\begin{equation*}
L_{2}=R P_{1} \quad L_{3}=3 R P_{2} \quad L_{1}=T \quad V_{ \pm}=\sqrt{R} Q_{ \pm} \tag{30}
\end{equation*}
$$

and simultaneous rescaling of real deformation parameter q (see [3-5, 12]; κ-mass-like parameter)

$$
\begin{equation*}
q(R)=\exp \left(\frac{1}{2 \kappa R}\right) \tag{31}
\end{equation*}
$$

We obtain by putting $T \rightarrow \infty$
$\left\{Q_{ \pm}, Q_{ \pm}\right\}= \pm \frac{1}{2} P_{1} \quad\left\{Q_{+}, Q_{-}\right\}=-\frac{\kappa}{4} \sinh \frac{2 P_{2}}{\kappa}$
$\left[T, Q_{ \pm}\right]= \pm \frac{1}{2} \cosh \frac{2 P_{2}}{\kappa} Q_{\mp} \quad\left[P_{1}, Q_{ \pm}\right]=\frac{1}{2} \cosh \frac{2 P_{2}}{\kappa} Q_{\mp} \quad\left[P_{2}, Q_{ \pm}\right]=0$
$\left[P_{1}, P_{2}\right]=0 \quad\left[T, P_{1}\right]=-\frac{1}{4} \kappa \sinh \frac{4 P_{2}}{\kappa} \quad\left[T, P_{2}\right]=P_{1}$.
The Casimir (25) before the contraction limit $R \rightarrow \infty$ should be rescaled as follows

$$
\begin{equation*}
C_{2}^{q(R)}=R^{2} C_{2} \tag{33}
\end{equation*}
$$

From (25) and (30) one gets for $R \rightarrow \infty$ the following result

$$
\begin{equation*}
C_{2}^{\kappa}=\frac{1}{4} \kappa^{2} \sinh ^{2}\left(\frac{2 P_{2}}{\kappa}\right)+P_{1}^{2}=\frac{1}{8} \kappa^{2}\left(\cosh \left(\frac{4 P_{2}}{\kappa}\right)-1\right)+P_{1}^{2} . \tag{34}
\end{equation*}
$$

The comultiplication table (22) implies that
$\Delta(T)=T \otimes \mathrm{e}^{-2 P_{2} / \kappa}+\mathrm{e}^{2 P_{2} / \kappa} \otimes T+\frac{2}{\kappa} \mathrm{e}^{P_{2} / \kappa}\left\{Q_{+} \otimes Q_{+}-Q_{-} \otimes Q_{-}\right\} \mathrm{e}^{-P_{2} / \kappa}$
$\Delta\left(P_{1}\right)=P_{1} \otimes \mathrm{e}^{-2 P_{2} / \kappa}+\mathrm{e}^{2 P_{2} / \kappa} \otimes P_{1}-\frac{2}{\kappa} \mathrm{e}^{P_{2} / \kappa}\left(Q_{+} \otimes Q_{+}++Q_{-} \otimes Q_{-}\right\} \mathrm{e}^{-P_{2} / \kappa}$
$\Delta\left(P_{2}\right)=P_{2} \otimes 1+1 \otimes P_{2}$
$\Delta\left(Q_{ \pm}\right)=Q_{ \pm} \otimes \mathrm{e}^{-P_{2} / \kappa}+\mathrm{e}^{P_{2} / \kappa} Q_{ \pm}$
and after contraction the antipodes are
$S(T)=-T-\frac{1}{\kappa} P_{1} \quad S\left(Q_{ \pm}\right)=-Q_{ \pm} \quad S\left(P_{r}\right)=-P_{r} \quad r=1,2$.
(b) Quantum $D=2$ Poincaré susy $(q \neq 1)$. For all real values of q the following rescaling
$L_{1}=R P_{0} \quad L_{2}=R P_{1} \quad L_{3}=L \quad V_{ \pm}=\sqrt{R} q^{ \pm 1 / 2}\left(q+q^{-1}\right)^{-1} S_{ \pm}$
provides the finite limit $R \rightarrow \infty$ of the quantum superalgebra (18)-(20). We obtain ($\mu=0,1$):

$$
\begin{array}{ll}
\left\{S_{ \pm}, S_{ \pm}\right\}=2\left(P_{\mathrm{I}} \mp P_{0}\right) \\
\left\{S_{+}, S_{-}\right\}=0 & {\left[P_{\mu}, P_{\nu}\right]=0} \\
{\left[L, S_{ \pm}\right]= \pm \frac{1}{2} S_{ \pm}} & {\left[P_{\mu}, Q_{ \pm}\right]=0} \tag{38}\\
{\left[L, P_{0}\right]=-P_{1}} & {\left[L, P_{1}\right]=-P_{0}}
\end{array}
$$

and for the Casimir rescaled according to (33) we get

$$
\begin{equation*}
C_{2}=P_{\mu} P^{\mu}=P_{1}^{2}-P_{0}^{2} \tag{39}
\end{equation*}
$$

We see that the superalgebra structure for the contraction given by (37) describes classical $D=2$ Euclidean superalgebra. The difference however, will appear in the comultiplication rules
$\Delta\left(P_{0}\right)=P_{0} \otimes q^{-4 L}+q^{4 L} \otimes P_{0}+\frac{1}{2} q^{2 L}\left\{\left(q^{2}-1\right) S_{-} \otimes S_{-}+\left(q^{-2}-1\right) S_{+} \otimes S_{+}\right\} q^{-2 L}$
$\Delta\left(P_{1}\right)=P_{1} \otimes q^{-4 L}+q^{4 L} \otimes P_{1}+\frac{1}{2} q^{2 L}\left\{\left(q^{-2}-1\right) S_{+} \otimes S_{+}-\left(q^{2}-1\right) S_{-} \otimes S_{-}\right\} q^{-2 L}$
$\Delta(L)=L \otimes 1+1 \otimes L$
$\Delta\left(S_{ \pm}\right)=S_{ \pm} \otimes q^{-2 L}+q^{2 L} \otimes S_{ \pm}$
and in the formulae for the antipode

$$
\begin{align*}
& S(L)=-L \quad S\left(S_{ \pm}\right)=-q^{\mp 1} S_{ \pm} \\
& S\left(P_{0}\right)=-\frac{1}{2}\left(q^{2}+q^{-2}\right) P_{0}+\frac{1}{2}\left(q^{-2}-q^{2}\right) P_{1} \tag{41}\\
& S\left(P_{1}\right)=\frac{1}{2}\left(q^{-2}-q^{2}\right) P_{0}-\frac{1}{2}\left(q^{2}+q^{-2}\right) P_{1}
\end{align*}
$$

We would like to mention that similar structure of the q-deformed $D=2$ supersymmetry was obtained in [13] by studying the q-deformation of $\operatorname{SL}(1 \mid 1)$ superalgebra with the difference between classical and quantum algebra appearing in the comultiplication rules and the formulae for antipodes.
(c) Quantum $D=2$ Poincaré $\operatorname{susY}(q=1, \kappa \neq 0)$. The third non-trivial contraction of the quantum superalgebra $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2))$ is provided by the rescaling

$$
\begin{equation*}
L_{1}=R P_{0} \quad L_{2}=L \quad L_{3}=R P_{1} \quad V_{ \pm}=\sqrt{R} \tilde{S}_{ \pm} \tag{42}
\end{equation*}
$$

and the redefinition (31) of the deformation parameter. In the limit $R \rightarrow \infty$ one gets

$$
\begin{align*}
& \left\{S_{ \pm}, S_{ \pm}\right\}=-\frac{1}{2} P_{0} \quad\left\{S_{+}, S_{-}\right\}=-\frac{1}{4} \kappa \sinh \frac{2 P_{1}}{\kappa} \\
& {\left[L, S_{ \pm}\right]=\frac{1}{2} \cosh \frac{2 P_{1}}{\kappa} S_{\mp} \quad\left[L, P_{0}\right]=\frac{1}{4} \kappa \sinh \frac{2 P_{1}}{\kappa}} \tag{43}\\
& {\left[L, P_{1}\right]=P_{0} \quad\left[P_{\mu}, P_{\nu}\right]=0 \quad\left[P_{\mu}, S_{ \pm}\right]=0 .}
\end{align*}
$$

The Casimir rescaled in accordance with (4.4) takes the form

$$
\begin{equation*}
C_{2}=\frac{1}{4} \kappa^{2} \sinh ^{2}\left(\frac{2 P_{1}}{\kappa}\right)-P_{0}^{2} \tag{44}
\end{equation*}
$$

and can be compared with the one obtained in [4,5] for the $D=2$ Minkowski quantum plane. The coproduct formulae look as follows

$$
\begin{align*}
& \Delta\left(P_{0}\right)=P_{0} \otimes \mathrm{e}^{-2 P_{1} / \kappa}+\mathrm{e}^{2 P_{1} / \kappa} \otimes P_{0} \\
& \Delta\left(P_{1}=P_{1} \otimes 1+1 \otimes P_{1}\right. \\
& \Delta(L)=L \otimes \mathrm{e}^{-2 P_{1} / \kappa}+\mathrm{e}^{2 P_{1} / \kappa} L-\frac{2}{\kappa} \mathrm{e}^{P_{1} / \kappa}\left(S_{+} \otimes S_{+}+S_{-} \otimes S_{-}\right) \mathrm{e}^{P_{1} / \kappa} \tag{45}\\
& \Delta\left(S_{ \pm}\right)=S_{ \pm} \otimes \mathrm{e}^{-P_{1} / \kappa}+\mathrm{e}^{P_{1} / \kappa} \otimes S_{ \pm}
\end{align*}
$$

and the antipodes are given by

$$
\begin{equation*}
S\left(P_{\mu}\right)=-P_{\mu} \quad S\left(P_{ \pm}\right)=-S_{ \pm} \quad S(L)=-L-\frac{P_{0}}{\kappa} \tag{46}
\end{equation*}
$$

We have shown here three different contraction limits for the real quantum superalgebra $\mathrm{U}_{q}(\mathrm{OSp}(1 \mid 2))$ (the fourth, with L_{1} unchanged, and $q \neq 1$, is divergent). Similarly, one can perform the contraction limits for other two real forms of the complex quantum superalgebra $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2)) \dagger$.

We have described here different quantum $D=2$ supersymmetry algebras obtained as the contraction limits of the real quantum superalgebra $\mathrm{U}_{q}(\mathrm{OSp}(1 \mid 2))$. It should be mentioned that there are also two other contractions, not corresponding to $D=2$ supersymmetry.
(i) Assuming the rescaling (31) and

$$
\begin{equation*}
L_{k}=R P_{k} \quad V_{ \pm}=\sqrt{R} Q_{ \pm} \tag{47}
\end{equation*}
$$

one obtains in the limit $R \rightarrow \infty$ the conventional $D=3$ Minkowski superalgebra relation with modified comultiplication rules.
(ii) Following the derivation of the q-deformed bosonic creation and annihilation operators by considering the limit $j \rightarrow \infty$ of the $(2 j+1)$-dimensional realizations of

[^1]$\mathrm{U}_{q}(\mathrm{SU}(2))$ [14], one can derive in an analogous way the algebra of q-deformed fermionic oscillators described by the suitable limits of $V_{ \pm}$[15].

From our formula (18) it is clear that the quantum Lie algebra $U_{q}(S p(2))$ is not a quantum subalgebra of $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2))$. This property is due to the prescription (16b) for the generators corresponding to the non-simple roots. If we use however the q-oscillator realization of the q-deformed Cartan-Chevaley basis ($e_{ \pm \alpha}, h_{\alpha}$) of $\mathrm{U}_{q}(\operatorname{OSp}(1 \mid 2)$ (see e.g. [16, 17]), one can propose different definitions of the generators $e_{ \pm 2 \alpha}$, e.g. obtained by the q-deformation of the oscillator realizations of $\operatorname{OSp}(1 \mid 2)$. In such a way one obtains a different q-deformation of the Cartan-Weyl basis of $\operatorname{OSp}(1 \mid 2)$, with q-deformed $\operatorname{Sp}(2)$ being the subalgebra of the q-deformed $\operatorname{OSp}(1 \mid 2)$. Other relations for q-deformed Cartan-Weyl basis $\mathrm{U}_{q}(\mathrm{OSp}(1 \mid 2))$ have also been obtained by Kulish [6] using the Fadeev-Reshetikhin-Takhtajan formalism of triangular $L^{ \pm}$ operators [2].

The main aim of this letter was to show the variety of possible contractions for a simple rank-one quantum group. Because the R-matrix and dual description of the generators of the algebra of functions for $\mathrm{OSp}_{q}(1 \mid 2)$ is also known [6,7], one can also perform the contractions of the R-matrix and introduce the dual picture of contracted quantum supergroups.

Finally let us mention that our real aim is the q-deformation of the $D=4$ superPoincaré algebra [18] as the supersymmetric extension of our results for the q-deformed Poincaré algebra [12]. In such a case one considers the contraction of the real quantum superalgebra $\mathrm{U}_{q}(\operatorname{OSP}(1 \mid 4 ; R)$.

One of the authors (JL) would like to thank Drs P Kulish and C Sorace for the information that they were working on similar problems, and the agreement to publish our results independently.

References

[1] Drinfeld V G 1986 Proc ICM, Berkeley vol I, ed A M Gleason (Providence, RI: American Mathematical Society) p 798
[2] Fadeev L D, Reshetikhin N Yu and Takhtajan L A 1989 Alg. Anal. 1178 (in Russian)
[3] Celeghini E, Giachetti R, Sorace E and Tarlini M 1990 J. Math. Phys. 312548
[4] Celeghini E, Giachetti R, Sorace E and Tarlini M 1991 Three-dimensional Euclidean quantum group $E(3)_{q}$ and its R-matrix J. Math. Phys. in press
[5] Celeghini E, Giachetti R, Sorace E and Tarlini M 1990 Contractions of quantum groups Proc. EIMI Workshop on Quantum Groups, October-December 1990 (Singapore: World Scientific) in press
[6] Kulish P P 1988 Preprint RIMS-615 Kyoto University
[7] Kulish P P and Reshetikhin Yu N 1989 Lett. Math. Phys. 18143
[8] Kulish P P 1989 Quantum Lie superalgebras and supergroups Proc. Alushta School on QFT (Berlin: Springer) p 11
[9] Masuda T, Mimachi K, Nakagani Y, Noumi M, Saburi Y and Ueno K 1990 Lett. Math. Phys. 19187
[10] Scheunert M, Nahm W and Rittenberg V 1977 J. Math. Phys. 18146
[11] Berezin F and Tolstoy V 1981 Commun. Math. Phys. 78409
[12] Lukierski J, Nowicki A, Ruegg H and Tolstoy V $1991 q$-deformation of Poincaré algebra Phys. Lett. B in press
[13] Schmidke W B, Vokos S P and Zumino B 1989 Berkeley Preprint UCB-PTH-89/32
[14] Chaichian M and Kulish P P 1990 Phys. Lett. 234B 72
[15] Kulish P P 1991 Teor. Mat. Fiz. 86158 (in Russian)
[16] Chaichian M, Kulish P P and Likierski J 1991 Phys. Lett. 237B 401
[17] Floreanini R, Spiridonov V P and Vinet L 1991 Commun. Math. Phys. in press
[18] Lukierski J, Nowicki A, Ruegg H and Tolstoy V in preparation

[^0]: \dagger For the general discussion of involutions defining real forms of superalgebras see [10].

[^1]: \dagger One of the authors (JL) was informed by P Kulish that some contractions of $\mathrm{U}_{q}(\mathrm{OSp}(1 \mid 2))$ were obtained by him and the Firenze group.

